Equilibrium Evolution in the ZaP Flow Z-Pinch
نویسندگان
چکیده
The ZaP Flow Z-pinch experiment at the University of Washington investigates the innovative plasma confinement concept of using sheared flows to stabilize an otherwise unstable configuration. The stabilizing effect of a sheared axial flow on the m = 1 kink instability in Z-pinches has been studied using linearized, ideal MHD theory to reveal that a sheared axial flow stabilizes the kink mode when the shear exceeds a threshold. The ZaP experiment generates an axially flowing Z-pinch that is 1 m long with a 1 cm radius with a coaxial accelerator coupled to a pinch assembly chamber. Magnetic probes measure the fluctuation levels of the azimuthal modes m = 1, 2, and 3. After assembly the plasma is magnetically confined for an extended quiescent period where the mode activity is significantly reduced. Time-resolved Doppler shifts of plasma impurity lines are measured along 20 chords to determine the plasma axial velocity profiles showing a large, but sub-Alfvenic, sheared flow during the quiescent period and low shear profiles during periods of high mode activity. The plasma has a sheared axial flow that exceeds the theoretical threshold for stability during the quiescent period and is lower than the threshold during periods of high mode activity. The sheared flow profile is coincident with a plasma quiescent period where magnetic mode fluctuations are low. The value of the velocity shear satisfies the theoretical threshold for stability during the quiescent period and does not satisfy the threshold during high mode activity. Multichord and holographic interferometers measure a Z-pinch plasma with a peaked radial profile during the quiescent period. Internal magnetic fields have been recently determined by measuring the Zeeman splitting of impurity carbon emission. The measurements are consistent with a well-confined pinch plasma.
منابع مشابه
Calculation of the Equilibrium Evolution of the ZaP Flow Z -Pinch Using a Four-Chord Interferometer
A four-chord interferometer and measurements from an array of surface-mounted magnetic probes were used in conjunction with equations of radial heat conduction and radial force balance to calculate the equilibrium evolution of a pinch plasma in the ZaP flow Z-pinch. A multiple shooting method was used to solve the nonlinear coupled differential equation system, with ohmic heating and bremsstrah...
متن کاملEvidence of Flow Stabilization in the ZaP Z Pinch Experiment
The stabilizing effect of an axial flow on the m = 1 kink instability in Z pinches has been studied numerically with a linearized ideal MHD model to reveal that a sheared axial flow stabilizes the kink mode when the shear exceeds a threshold. The sheared flow stabilizing effect is investigated with the flow-through Z pinch experiment, ZaP. An azimuthal array of surface mounted magnetic probes l...
متن کاملThe Sheared Flow Stabilized Z-Pinch
The stabilizing effect of a sheared axial flow is investigated in the ZaP Flow Z-pinch experiment at the University of Washington. Long-lived, Z-pinch plasmas are generated that are 100 cm long with a 1 cm radius and exhibit gross stability for many Alfvén transit times. Experimental measurements show a sheared flow profile that is coincident with the quiescent period during which magnetic fluc...
متن کاملOptimum driving a Z-pinch for soft X-Ray lasers
A capillary plasma z-pinch as an alternative active medium of soft X-Ray lasers was studied experimentally and theoretically. The theoretical analysis was based on the self consistent solution of the so called “snow plow” model. The dynamics of pinched plasma is determined by the capillary parameters and by the time dependence of electrical current passing through it. The current time dependenc...
متن کاملStatistical equilibrium theory for axisymmetric flows: Kelvin’s variational principle and an explanation for the vortex ring pinch-off process
Thermodynamics of vorticity density fields ~v/r! in axisymmetric flows are considered, and the statistical equilibrium theories of Miller, Weichman, and Cross @Phys. Rev. A 45, 2328 ~1992!#, Robert and Sommeria @J. Fluid Mech. 229, 291 ~1991!#, and Turkington @Comm. Pure Appl. Math. 52, 781 ~1999!# for the two-dimensional flows in Cartesian coordinates are extended to axisymmetric flows. It is ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010